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Abstract—The Low Earth Orbit (LEO) satellite constellation
has been recognized as an important component of the future
6G network. However, due to the high-speed movement of LEO
satellites and the potential for link failures, achieving optimal
satellite communication performance with a static inter-satellite
links (ISLs) scheme is challenging. To solve this problem, this
paper proposes an ISL re-planning algorithm with considering
link failures based on multi-agent deep reinforcement learn-
ing (named ReISL). In ReISL, a multi-objective optimization
problem is formulated to maximize the system capacity while
minimizing the link switching costs. Then, multi-agent deep
reinforcement learning is employed to derive the optimal ISL
re-planning schemes, where each satellite utilizes Double Deep
Q-Network (DDQN). Finally, extensive experiments are carried
out and the results demonstrate that our proposed algorithm
ReISL can outperform the baseline algorithms.

Index Terms—LEO satellite, link failure, inter-satellite link re-
planning, multi-agent deep reinforcement learning.

I. INTRODUCTION

The Low Earth Orbit (LEO) satellite constellation is an
emerging and promising technology to provide broadband
communications, low latency services, and global coverage for
ground users [1]. To provide efficient communication among
users in different satellite coverage areas without the relay
of any ground station, inter-satellite links (ISLs) are usually
established between satellites. However, due to the complexity
and uncertainty of the space environment, ISLs may fail due
to satellite hardware damage or natural phenomena. These
failures can be categorized into two types according to their
duration: temporary link failures and persistent link failures.
Temporary link failures are mainly caused by interference in
the transmission medium (eg, solar activity) and last for a short
duration; persistent link failures are mainly caused by satellite
hardware failures (eg, transponder failures) and last for a long
duration. Temporary link failures usually recover quickly with
low impact on the system. In contrast, persistent link failures
are difficult to repair, leading to a reduction in the number
of available communication paths and a degradation in the
quality of communications, which reduce system performance
and efficiency. In addition, they lead to a waste of satellite
resources. Therefore, how to re-plan ISLs to quickly adapt to
link failures and optimize the network topology is a key field
for future research.

However, it is challenging to solve the above problem due to
the dynamic environmental states of the LEO satellite constel-

lation. First, link failures are random, which are unpredictable
and of variable duration. How to timely re-plan ISLs according
to the link failure state is one of the keys to solve the problem.
Second, a satellite has more than one candidate satellite, and
there exists competition and cooperation between satellites
within the same orbit. Competition with other satellites is to
improve the quality of their inter-plane ISLs, while coopera-
tion is to maximize the overall constellation performance. It is
essential to achieve a good trade-off between competition and
cooperation for the satellites in the constellation. Third, during
link re-planning, when different satellites in the same orbit
make decisions to the same candidate satellite, there will be
a “decision conflict”, resulting in some of the satellites being
unable to establish ISLs, which leads to resource wastage.

Most of the existing ISL planning algorithms do not con-
sider the impact of link failures on system performance. The
basic ISL planning algorithms are heuristic [2],[3], which
derive the scheme based on the partial information of the
LEO constellation by greedy, genetic, and other methods, and
are easy to result in local optimality. Some other researches
are based on the Integer linear programming (ILP) algorithms
[4],[5] and the Mixed-Integer Programming (MIP) algorithms
[6],[7]. However, the complexity of the ILP and MIP algo-
rithms grows exponentially as the constellation size increases.
A Multi-agent Deep Reinforcement Learning (MADRL)-based
ISL planning algorithm is proposed in [8]. However, this algo-
rithm cannot completely solve the decision conflict problem.
A satellite link model with three fixed ISLs and one dynamic
ISL is designed in [9], which uses MADRL to reduce com-
munication, storage, and computation costs. Nonetheless, the
algorithm is not flexible enough and the system performance
enhancement is limited.

To solve the above problem, we propose a MADRL-
based ISL re-planning algorithm with considering link failures,
named ReISL algorithm. In this algorithm, each agent makes
actions based on its local observations and is trained with ob-
servations and actions of all the agents. Our main contributions
are summarized as follows:
• We propose a MADRL-based distributed ISL re-planning

algorithm with considering link failure information,
which aims to quickly adapt to changes in the LEO
satellite constellation.

• We model the ISL re-planning problem as a Markov
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Decision Process (MDP) and solve it using a Double
Deep Q Network (DDQN) to achieve a good trade-
off between satellite competition and cooperation in the
constellation.

• We employ polling decision-making among agents within
the same orbit plane and independent decision-making
among agents across different orbit planes in each
decision-making process in order to avoid decision con-
flicts.

• Extensive experiments are carried out and the results
show that the ReISL algorithm can significantly improve
the system capacity and reduce the switching cost.

II. RELATED WORK

In this section, we review the recent research on the ISL
planning algorithms of the LEO satellite constellation. Most
research algorithms about ISL planning are focused on heuris-
tic algorithms [2], [3], ILP algorithm [4], [5], MIP algorithm
[6], [7] and deep reinforcement learning [8], [9], as described
below.

Tu et al. [2] proposed an inter-plane ISL planning algorithm
based on the greedy algorithm to jointly optimize the ISL
switching energy consumption and data transmission energy
consumption. Li et al. [3] defined a representation of satellite
system design based on tree structure, and designed an ISL
planning method based on genetic algorithm. The above
methods are based on heuristic algorithms, which are easy to
result in local optimality. Yan et al. [4] modeled the network
of ISLs with Finite State Automaton (FSA) and solved the ISL
planning problem based on ILP. Yan et al. [5] formulated the
ISL topology design problem as an ILP problem, and proposed
a more effective heuristic algorithm based on the maximum
weight matching algorithm. Both [6] and [7] formulated the
ISL planning and resource allocation problem as a MIP
problem and solved it using the Lagrangian method. However,
with the increase of constellation size, the complexity of ILP
and MIP algorithms increases exponentially. To solve the high
complexity problem, Pi et al. [8] proposed an approach based
on the MADRL to train the algorithm orbit by orbit. However,
this algorithm cannot completely solve the decision conflict
problem. Wang et al.[9] designed a satellite link model with
three fixed ISLs and one dynamic ISL and solved it with
MADRL, but the algorithm is not flexible enough and the
system performance improvement is limited. Additionally, the
above methods do not consider the impact of link failures on
system performance, which cannot adapt to link failures and
re-plan ISLs in time.

III. SYSTEM MODEL AND PROBLEM
FORMULATION

A. System Architecture

As shown in Fig. 1, we consider an inclined orbit con-
stellation consisting of 𝑁 satellites evenly distributed across
𝑀 orbital planes. For the satellite 𝑖, we define its Cartesian
coordinates as (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) and the orbital plane it is located in
as 𝑚𝑖 . The constellation can be represented as an undirected

Fig. 1: LEO satellite constellation topology and decision network

graph 𝑔 = (𝑉, 𝐸), where 𝑉 denotes the set of vertices
(satellites), 𝐸 denotes the set of edges (ISLs). And the link
between satellite 𝑖 and satellite 𝑗 is denoted as 𝑒𝑖 𝑗 .

Each satellite can establish two types of ISLs: intra-plane
ISLs and inter-plane ISLs. Intra-plane ISLs denote links es-
tablished by satellites within the same orbital plane, whereas
inter-plane ISLs denote links established by satellites within
adjacent orbital planes. We assume that all satellites actively
decide to establish ISLs with satellites in the next orbital plane,
defining this side as the positive side, and passively accept
ISLs from satellites in the previous orbital plane, defining this
side as the negative side.

Each satellite is considered as an ISL re-planning agent
with a deterministic policy network and a value network. The
state collector obtains the states and rewards by interacting
with other satellites in the environment. The ISL re-planning
agent makes decisions based on the state information collected
by the state collector, and the ISL actuator establishes inter-
plane ISLs with the corresponding satellites according to the
instructions from the ISL re-planning agent.

B. Communication Model

To describe the potential communication relationships be-
tween satellites, we introduce the concept of “candidate satel-
lite pairs”. The conditions for satellite 𝑖 and satellite 𝑗 to form
a candidate satellite pair include multiple aspects. First, the
Euclidean distance between satellite 𝑖 and satellite 𝑗 is less
than the line-of-sight distance, expressed as

𝑑𝑖 𝑗 < 𝑑horiz, (1)

where 𝑑𝑖 𝑗 denotes the Euclidean distance between the satel-
lites, denoted as

𝑑𝑖 𝑗 =

√︃(
𝑥𝑖 − 𝑥 𝑗

)2 +
(
𝑦𝑖 − 𝑦 𝑗

)2 +
(
𝑧𝑖 − 𝑧 𝑗

)2
, (2)

and 𝑑horiz represents the line-of-sight distance between satel-
lites, denoted as

𝑑horiz = 2 [ℎ (ℎ + 2𝑅𝐸)]1/2 , (3)
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where 𝑅𝐸 is the radius of the Earth. Second, satellite 𝑖 and
satellite 𝑗 are not in the same orbital plane. ISLs within the
same orbital plane are stable and do not require planning.

Based on the above analysis, the set of candidate satellite
pairs for the inclined orbit constellation can be expressed as

𝑌 =
{
𝑖 𝑗 :

��𝑚𝑖 − 𝑚 𝑗

�� ∉ {0} & 𝑑𝑖 𝑗 < 𝑑horiz
}
. (4)

After the link is established, the signal power received by
the optical receiver is

𝑃𝑟 = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 −
[
𝐿𝑝 +

∑︁
𝐿𝑒 + 𝑆 𝑓

]
, (5)

where 𝑃𝑟 is the received signal power, 𝑃𝑡 is the transmitted
power, 𝐺𝑡 is the transmitted antenna gain, 𝐺𝑟 is the received
antenna gain, 𝐿𝑝 is the free-space path loss,

∑
𝐿𝑒 is the sum

of other losses, and 𝑆 𝑓 is the compensation factor. Assuming
that ISLs are established adopting PIN photoelectric detector,
the SNR can be expressed as

𝑆

𝑁
=

𝜉𝑃𝑟

Δ 𝑓 ℎ𝑣
, (6)

where 𝜉 is the quantum efficiency, 𝑣 is the frequency of
incident light, ℎ is Planck constant, and Δ 𝑓 is the unilateral
broadband. The Bit Error Rate (BER) is denoted as 𝑃𝑒, when
𝑃𝑒 = 10−9 and 𝜉 = 1, the link capacity can be expressed as

𝑟𝑏 = 2Δ 𝑓 =
𝑝𝑟

18ℎ𝑣
. (7)

C. Link Switching Cost Model

In this paper, we estimate the link switching cost based
on the antenna steering angle. The antenna steering angle for
switching 𝑒𝑖, 𝑗1 to 𝑒𝑖, 𝑗2 is

𝜃
𝑗1 , 𝑗2
𝑖

= arccos

( (
𝑑𝑖 𝑗1

)2 +
(
𝑑𝑖 𝑗2

)2 −
(
𝑑 𝑗1 𝑗2

)2

2 · 𝑑𝑖 𝑗1 · 𝑑𝑖 𝑗2

)
. (8)

To calculate the antenna steering costs of inter-plane ISLs,
we define the average antenna steering angle 𝜃𝑖 for each
satellite 𝑖. For the 𝑡-th time slot, 𝜃𝑖,𝑡 is defined as [8]

𝜃𝑖,𝑡 =

∑
𝑗1≠ 𝑗2∈𝑌+𝑖,𝑡

𝜃
𝑗1 , 𝑗2
𝑖
+∑

𝑗1≠ 𝑗2∈𝑌−𝑖,𝑡
𝜃
𝑗1 , 𝑗2
𝑖(

𝑁+
𝑖,𝑡

2

)
+

(
𝑁−
𝑖,𝑡

2

) , (9)

where 𝑌+
𝑖,𝑡

and 𝑌−
𝑖,𝑡

represent the set of satellites 𝑗 that satisfy
the condition 𝑖 𝑗 ∈ 𝑌𝑡 in the positive and negative side planes
of the satellite 𝑖, respectively, 𝑌𝑡 is the set of candidate satellite
pairs for the 𝑡-th time slot. And 𝑁+

𝑖,𝑡
, 𝑁−

𝑖,𝑡
represent the number

of candidate satellite pairs in sets 𝑌+
𝑖,𝑡

and 𝑌−
𝑖,𝑡

.
We define the antenna steering angle caused by establishing

the inter-plane ISL 𝑒𝑖 𝑗 in the 𝑡-th time slot as

𝜃𝑒𝑖 𝑗 ,𝑡 =

{
0 , 𝑒𝑖 𝑗 ∈ 𝐸𝑡−1

𝜃𝑖,𝑡 + 𝜃 𝑗 ,𝑡 , 𝑒𝑖 𝑗 ∉ 𝐸𝑡−1
, (10)

where 𝐸𝑡 denotes the set of ISLs at the 𝑡-th time slot.

D. Problem Formulation

The optimization objective of this paper is to increase the
system capacity while reducing the link switching costs. For
the 𝑡-th time slot, we define the utility function 𝜑 (𝑡) as

𝜑 (𝑡) =
∑︁
𝑒𝑖 𝑗

𝛼1𝑟𝑒𝑖 𝑗 ,𝑡 −
∑︁
𝑒𝑖 𝑗

𝛼2𝜃𝑒𝑖 𝑗 ,𝑡 , (11)

where 𝛼1 and 𝛼2 are weight factors, 𝑟𝑒𝑖 𝑗 ,𝑡 denotes link capacity
of 𝑒𝑖 𝑗 . We assume that a satellite period has 𝑁𝑑 time slots.
Therefore, the optimization problem can be formulated as
maximizing the utility of the satellite network as follows

max
𝑁𝑑∑︁
𝑡=1

𝜑 (𝑡)

𝑠.𝑡.


𝑖 𝑗 ∈ 𝑌𝑡
𝑒𝑖 𝑗 ∈ 𝐸𝑡

𝛼1, 𝛼2

.

(12)

IV. THE PROPOSED REISL ALGORITHM

In this section, we introduce the proposed ReISL algorithm,
which formulates the optimization problem as a model-free
MDP and utilizes the deep reinforcement learning method to
optimize the decision-making process.

A. Elements of MDP

In the LEO satellite constellation, each satellite is consid-
ered as an agent. Within the MDP framework, agents do not
rely on explicit dynamic models of the environment, but learn
the optimal strategy through interaction with the environment.
The key elements of MDP can be defined as follows.

State Space. For agent 𝑖, the state space S𝑖 is defined as S𝑖 ={
D𝑖 ,C𝑖 ,F𝑠

𝑖
,F𝑟

𝑖
, I𝑖

}
. Setting the number of candidate satellites

for each satellite to 𝑛, the closest 𝑛 satellites in the next orbit
will be candidates for satellite 𝑖. D𝑖 = ⟨𝐷𝑖,1, . . . , 𝐷𝑖,𝑛⟩ denotes
the set of normalized distances to candidate satellites; C𝑖 =

⟨𝐶𝑖,1, . . . , 𝐶𝑖,𝑛⟩ indicates the set of states whether candidate
satellites are occupied by decisions of other satellites or not,
𝐶𝑖, 𝑗 = 1 indicates that the 𝑗-th candidate satellite is occupied,
otherwise 𝐶𝑖, 𝑗 = 0; F𝑠

𝑖
= ⟨𝐹𝑠

𝑖,1, . . . , 𝐹
𝑠
𝑖,𝑛
⟩ represents the set of

positive-side transponder failure states of neighboring satellites
in the same orbit, which can make them cooperate better, and
the number of neighbors depends on the number of candidate
satellites, 𝐹𝑠

𝑖, 𝑗
= 1 indicates that the positive-side transponder

of the 𝑗-th neighbor satellite is faulty, otherwise 𝐹𝑠
𝑖, 𝑗

= 0; F𝑟
𝑖
=

⟨𝐹𝑟
𝑖,1, . . . , 𝐹

𝑟
𝑖,𝑛
⟩ represents the set of negative-side transponder

failure states of candidate satellites in the next orbit, 𝐹𝑟
𝑖, 𝑗

= 1
represents the negative-side transponder of the 𝑗-th candidate
satellite is faulty, otherwise 𝐹𝑟

𝑖, 𝑗
= 0; I𝑖 = ⟨𝐼𝑖,1, . . . , 𝐼𝑖,𝑛, 𝐼𝑖,0⟩

denotes the connection state of satellite 𝑖 in the previous time
slot, represented by a one-hot encoding, with 𝐼𝑖, 𝑗 = 1 when
the satellite 𝑖 is connected to the 𝑗-th candidate satellite, and
𝐼𝑖,0 = 1 when the satellite 𝑖 is not connected to any candidate
satellite.

Action Space. In this paper, we consider ISL re-planning
as a discrete decision-making process. The action space A𝑖 of
agent 𝑖 is defined as A𝑖 = {𝑣0, 𝑣1, . . . , 𝑣𝑛}, where 𝑣0 indicates
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the satellite does not establish an ISL with the satellite in the
next orbit, and 𝑣 𝑗 (1 ≤ 𝑗 ≤ 𝑛) indicates the satellite selects the
𝑗-th candidate satellite to establish ISL.

Reward. We define the reward function for agent 𝑖 as∑𝑁𝑚𝑖

𝑘=1 𝑟𝑘 + 𝛽𝑟𝑖 , where
∑𝑁𝑚𝑖

𝑘=1 𝑟𝑘 represents the sum of satellite
rewards in the orbital plane 𝑚𝑖 , 𝑁𝑚𝑖

denotes the total number
of satellites in the orbital plane 𝑚𝑖 , 𝑟𝑖 represents the reward for
the agent 𝑖, and 𝛽 represents the reward weight for the agent
𝑖. 𝑟𝑖 = 𝛼1𝑅𝑖 − 𝛼2𝜃𝑖 , where 𝑅𝑖 represents the link capacity of
satellite 𝑖, and 𝜃𝑖 represents the link switch cost of satellite 𝑖.

During each decision-making process, agents in the same
orbital plane take turns to make decisions using a polling
method and communicate the results to the next decision-
making satellite to avoid decision conflicts. Decision-making
for satellites in different orbital planes is independent of each
other.

B. The Proposed ReISL Algorithm

This paper uses the DDQN algorithm to optimize the
decision-making process. The core framework of DDQN con-
sists of an online network 𝑄 with parameter 𝜔 and a target
network 𝑄′ with parameter 𝜔′, where the online network 𝑄

selects optimal actions and the target network 𝑄′ evaluates
these actions. When the algorithm executes an action and ob-
serves a new state and reward, this information is stored as an
experience tuple (𝑠, 𝑎, 𝑟, 𝑠′) and added to the experience replay
buffer. In the DDQN algorithm, exploration and exploitation
are balanced by using the 𝜖-greedy strategy. At each time step,
the algorithm selects a random action with probability 𝜖 and
selects the currently estimated optimal action with probability
1 − 𝜖 .

In DDQN, the target value 𝑦 is calculated through the target
network 𝑄′. For each experience tuple (𝑠, 𝑎, 𝑟, 𝑠′), the target
value 𝑦 is defined as

𝑦 = 𝑟 (𝑠, 𝑎) + 𝛾 ·max (𝑄′ (𝑠′, 𝑎′, 𝜔′)) , (13)

where 𝑟 (𝑠, 𝑎) is the current reward, 𝛾 is the discount factor,
and max (𝑄′ (𝑠′, 𝑎′, 𝜔′)) is the maximum predicted value of
the target network 𝑄′ at the next state 𝑠′ and the next action
𝑎′.

The loss function 𝐿 (𝜔) is defined based on the temporal
difference error, measuring the discrepancy between the pre-
dicted values of the online network 𝑄 and the target value 𝑦.
The loss function 𝐿 (𝜔) is defined as

𝐿 (𝜔) = (𝑦 −𝑄(𝑠, 𝑎, 𝜔))2 (14)

The parameter 𝜔 of the online network is updated by
gradient descent algorithm, and the formula is

𝜔𝑡+1 ← 𝜔𝑡 − 𝛼 · ∇𝜔𝑡
𝐿 (𝜔𝑡 ) (15)

where 𝛼 is the learning rate, ∇𝜔𝑡
𝐿 (𝜔𝑡 ) is the loss function

gradient of online network parameter 𝜔𝑡 . During the updating
process, the algorithm calculates the gradient of the loss
function with respect to the online network parameters and
adjusts the parameters to optimize agent action selection.

The pseudo-code of training ReISL algorithm is shown in
Algorithm 1, where initializations and training processes are
the same for each agent.

Algorithm 1 Training process of ReISL
1: for each agent 𝑖 = 1 to 𝑁 do
2: Initialize the online network 𝜔𝑖 and the target network param-

eters 𝜔
′
𝑖

randomly
3: Initialize ReplayBuffer
4: end for
5: for each episode do
6: for each agent 𝑖 = 1 to 𝑁 do
7: Use 𝜖-greedy policy to select action 𝑎

8: Establish an ISL with the corresponding target satellite
9: Observe reward 𝑟 and next state 𝑠′

10: Store tuple (𝑠, 𝑎, 𝑟, 𝑠′) in ReplayBuffer
11: end for
12: if 𝑡 mod 𝑇update == 0 then
13: for each agent 𝑖 = 1 to 𝑁 do
14: Update the target network parameters: 𝜔

′
𝑖
= 𝜔𝑖

15: end for
16: end if
17: end for
18: for each agent 𝑖 = 1 to 𝑁 do
19: Sample a random batch (𝑠𝑏 , 𝑎𝑏 , 𝑟𝑏 , 𝑠

′
𝑏
) from ReplayBuffer for

training
20: Set 𝑦𝑏 = 𝑟 (𝑠𝑏 , 𝑎𝑏) + 𝛾 ·max

(
𝑄′

(
𝑠′
𝑏
, 𝑎′

𝑏
, 𝜔′

))
21: Calculate loss according to Equation (14)
22: Update the online network parameters according to Equation

(15)
23: end for

V. EXPERIMENT AND ANALYSIS

A. Simulation Setup

In this paper, we use Python 3.9.15 and Pytorch 1.10.0 to
build a simulation platform and conduct simulation experi-
ments to verify the feasibility and effectiveness of the proposed
algorithm. We model the distribution of ground services based
on the distribution data of residential areas, and map ground
services to inter-satellite traffic by calculating the coverage
relationship between satellites and the ground based on the
current constellation position. The constellation parameters are
shown in Table I.

TABLE I: SATELLITE CONSTELLATION PARAMETERS

Parameter Value

Number of satellites 120
Number of orbital planes 10
Altitude of orbital planes 1200 Km

Inclination of orbital planes 56 deg

In our experiments, we use the satellite transponder failure
probability to simulate the satellite link failure. We mainly
consider the persistent link failure and set the failure duration
as 5 to 50 minutes. We set the weighting factors to 𝛼1 = 1, 𝛼2 =

0.5 during the training phase, and the total traffic demand
is set to 90Gbps during the evaluation phase. We compared
the performance of each algorithm as the satellite transponder
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failure probability varied from 0% to 3%. Other simulation
parameters are provided in Table II.

TABLE II: PARAMETER SETTINGS FOR EVALUATION

Parameter Value

Simulation step 5 min
Number of candidate satellites 5

Bit error rate tolerance 10−9

Maximum link bandwidth 1.5 GHz
Failure duration 5 ∼ 50 min

Learning rate 0.001
Discount rate 0.5

Target network update cycle 100
Initial exploration rate 0.9

Exploration rate attenuation 0.999
Minimum exploration rate 0.01

Experience pool size 2400 · 𝑁𝑠𝑎𝑡

Size of the Mini-batch 1024

B. Performance Metrics and Baseline Algorithms

Performance Metrics: 1) Global throughput: The sum of
the traffic transmitted by all ISLs. 2) Packet loss rate: The
proportion of unsuccessfully transmitted traffic in the network
to the total network traffic. 3) Average ISL capacity: The
average capacity of all inter-plane ISLs. 4) Link connection
ratio: The ratio of successfully established inter-plane ISLs to
the maximum inter-plane ISLs. 5) Link switching ratio: The
ratio of switched ISLs to the total ISLs. 6) Average switching
cost: The average angle of antenna steering caused by all link
switching.

Baseline Algorithms: 1) GEO: Divide the latitude of a
satellite constellation into multiple logical regions and es-
tablish inter-plane ISLs for satellites belonging to the same
logical region. 2) GIEM: A dynamic inter-plane ISL planning
algorithm based on the greedy algorithm [10]. 3) GMM:
The extension of the GIEM algorithm aims at maintaining
inter-plane ISLs as much as possible [10]. 4) Fixed-ISL: The
traditional static link connection algorithm that establishes
inter-plane ISLs between satellites on adjacent orbits with the
same orbital slot index.

C. Experiment Results and Analysis

1) Convergence analysis: Fig. 2 represents the reward
convergence diagram. During the early stages of training,
the decisions made by the satellites are suboptimal due to
the randomly generated parameters of the neural network.
However, the algorithm basically reaches convergence after
7000 episodes, as a result of the neural network’s learning
and parameter updates.

2) Algorithm comparison analysis: As shown in Fig. 3,
when there is no satellite transponder failure, the performance
of other algorithms is almost the same except GEO algorithm.
This is because the GEO algorithm establishes ISLs for satel-
lites belonging to the same logical region, and its performance
is limited by region segmentation and the number of co-
orbital satellites. However, as the failure probability increases,
advantages of the ReISL algorithm gradually become apparent.

Fig. 2: Agents average reward after 12000 episodes

Fig. 3(a) shows that the throughput of satellite network
decreases with the increase of the failure probability. How-
ever, compared with baseline algorithms, ReISL algorithm
shows better throughput performance. Compared to other ISL
planning algorithms, the throughput of the ReISL algorithm
is improved up to 58.09%, and compared to the Fixed-ISL
algorithm, it is improved up to 10.73%. Fig. 3(b) shows
that the packet loss rate of ReISL algorithm is much lower
than that of baseline algorithms, because the ReISL algorithm
tends to select links that maximize the constellation system
capacity under link failures. Fig. 3(c) shows that the average
link capacity decreases with the increase of transponder failure
probability. This is because link failures prevent some satellites
from establishing links with the most suitable candidate satel-
lites. Fig. 3(d) illustrates that the link connectivity ratio of the
ReISL algorithm is higher than that of the GEO, GMM, and
Fixed-ISL algorithms, but slightly lower than that of the GIEM
algorithm, due to that GIEM algorithm does not consider
switching cost. Fig. 3(e) and Fig. 3(f) respectively show the
variations of the link switching ratio and the average link
switching cost with increasing transponder failure probability.
The Fixed-ISL algorithm does not perform link switching, so
its switching ratio and switching cost are both 0. Compared to
other ISL planning algorithms, the ReISL algorithm maintains
the lowest switching ratio and switching cost.

VI. CONCLUSION

This paper investigated the ISL re-planning of LEO con-
stellation under link failure, to improve the system capacity
of satellite constellation and reduce the link switching costs.
We model the optimization objective as model-free MDP
and use the ReISL algorithm to obtain the optimal decision.
The experimental results show that compared with baseline
algorithms, our proposed ReISL algorithm achieves better
performance.
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(a) Global throughput (b) Packet loss rate (c) Average ISL capacity

(d) Link connection ratio (e) Link switching ratio (f) Average switching cost

Fig. 3: Comparison of results for different algorithms
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